47 research outputs found

    Making Precise Resonators for Mesoscale Vibratory Gyroscopes

    Get PDF
    An alternative approach to the design and fabrication of vibratory gyroscopes is founded on the use of fabrication techniques that yield best results in the mesoscopic size range, which is characterized by overall device dimensions of the order of a centimeter. This approach stands in contradistinction to prior approaches in (1) the macroscopic size range (the size range of conventional design and fabrication, characterized by overall device dimensions of many centimeters) and (2) the microscopic size range [the size range of microelectromechanical systems (MEMS), characterized by overall device dimensions of the order of a millimeter or less]. The mesoscale approach offers some of the advantage of the MEMS approach (sizes and power demands smaller than those of the macroscale approach) and some of the advantage of the macroscale approach (the possibility of achieving relative dimensional precision greater than that of the MEMS approach). Relative dimensional precision is a major issue in the operation of a vibratory gyroscope. The heart of a vibratory gyroscope is a mechanical resonator that is required to have a specified symmetry in a plane orthogonal to the axis about which rotation is to be measured. If the resonator could be perfectly symmetrical, then in the absence of rotation, a free vibration of the resonator could remain fixed along any orientation relative to its housing; that is, the gyroscope could exhibit zero drift. In practice, manufacturing imprecision gives rise to some asymmetry in mass, flexural stiffness or dissipation, resulting in a slight drift or beating motion of an initial vibration pattern that cannot be distinguished from rotation. In the mesoscale approach, one exploits the following concepts: For a given amount of dimensional error generated in manufacturing, the asymmetry and hence the rate-of-rotation drift of the gyroscope can be reduced by increasing the scale. The decrease in asymmetry also reduces coupling of vibrations to the external environment. Mechanical thermal noise and electronic measurement noise and drift can also be reduced by increasing the size of the resonator and its associated sensors

    Micro-Ball-Lens Optical Switch Driven by SMA Actuator

    Get PDF
    The figure is a simplified cross section of a microscopic optical switch that was partially developed at the time of reporting the information for this article. In a fully developed version, light would be coupled from an input optical fiber to one of two side-by-side output optical fibers. The optical connection between the input and the selected output fiber would be made via a microscopic ball lens. Switching of the optical connection from one output fiber to another would be effected by using a pair of thin-film shape-memory-alloy (SMA) actuators to toggle the lens between two resting switch positions. There are many optical switches some made of macroscopic parts by conventional fabrication techniques and some that are microfabricated and, hence, belong to the class of microelectromechanical systems (MEMS). Conventionally fabricated optical switches tend to be expensive. MEMS switches can be mass-produced at relatively low cost, but their attractiveness has been diminished by the fact that, heretofore, MEMS switches have usually been found to exhibit high insertion losses. The present switch is intended to serve as a prototype of low-loss MEMS switches. In addition, this is the first reported SMA-based optical switch. The optical fibers would be held in V grooves in a silicon frame. The lens would have a diameter of 1 m; it would be held by, and positioned between, the SMA actuators, which would be made of thin films of TiNi alloy. Although the SMA actuators are depicted here as having simple shapes for the sake of clarity of illustration, the real actuators would have complex, partly net-like shapes. With the exception of the lens and the optical fibers, the SMA actuators and other components of the switch would be made by microfabrication techniques. The components would be assembled into a sandwich structure to complete the fabrication of the switch. To effect switching, an electric current would be passed through one of the SMA actuators to heat it above its transition temperature, thereby causing it to deform to a different "remembered" shape. The two SMA actuators would be stiff enough that once switching had taken place and the electrical current was turned off, the lens would remain latched in the most recently selected position. In a test, the partially developed switch exhibited an insertion loss of only -1.9 dB and a switching contrast of 70 dB. One the basis of prior research on SMA actuators and assuming a lens displacement of 125 m between extreme positions, it has been estimated that the fully developed switch would be capable of operating at a frequency as high as 10 Hz

    Lightweight, Segmented, Mostly Silicon Telescope Mirror

    Get PDF
    A document presents the concept of a curved telescope primary reflector structure, made mostly of silicon, that would have an areal mass density 1 kg/m2 and would be deployed in outer space, where it would be operated at a temperature in the cryogenic range. The concept provides for adjustment of the shape of the mirror to maintain the required precise optical surface figure despite the flexibility inherent in the ultra-lightweight design. The structure would include a thin mirror layer divided into hexagonal segments supported by flexure hinges on a lightweight two-layer backing structure. Each segment would also be supported at three points by sets of piezoelectric linear microactuators that could impose small displacements along the optical axis. The excitations applied to the aforementioned microactuators would be chosen to effect fine adjustments of the axial positions and the orientations of the segments relative to the supporting structure. Other piezoelectric linear microactuators embedded in the backing structure would enable control of the displacements of the segments along the hexagonal axes; they would also enable control of the curvature of the backing structure and, thus, additional control of the curvature of the reflector

    Membrane Mirrors With Bimorph Shape Actuators

    Get PDF
    Deformable mirrors of a proposed type would be equipped with relatively-large-stroke microscopic piezoelectric actuators that would be used to maintain their reflective surfaces in precise shapes. These mirrors would be members of the class of MEMS-DM (for microelectromechanical system deformable mirror) devices, which offer potential for a precise optical control in adaptive-optics applications in such diverse fields as astronomy and vision science. The proposed mirror would be fabricated, in part, by use of a membrane-transfer technique. The actuator design would contain bimorph-type piezoelectric actuators

    Miniature Inchworm Actuators Fabricated by Use of LIGA

    Get PDF
    Miniature inchworm actuators that would have relatively simple designs have been proposed for applications in which there are requirements for displacements of the order of microns or tens of microns and for the ability to hold their positions when electric power is not applied. The proposed actuators would be members of the class of microelectromechanical systems (MEMS), but would be designed and fabricated following an approach that is somewhat unusual for MEMS. Like other MEMS actuators, the proposed inchworm actuators could utilize thermoplastic, bimetallic, shape-memory-alloy, or piezoelectric actuation principles. The figure depicts a piezoelectric inchworm actuator according to the proposal. As in other inchworm actuators, linear motion of an extensible member would be achieved by lengthening and shortening the extensible member in synchronism with alternately clamping and releasing one and then the other end of the member. In this case, the moving member would be the middle one; the member would be piezoelectric and would be shortened by applying a voltage to it. The two outer members would also be piezoelectric; the release of the clamps on the upper or lower end would be achieved by applying a voltage to the electrodes on the upper or lower ends, respectively, of these members. Usually, MEMS actuators cannot be fabricated directly on the side walls of silicon wafers, yet the geometry of this actuator necessitates such fabrication. The solution, according to the proposal, would be to use the microfabrication technique known by the German acronym LIGA - "lithographie, galvanoformung, abformung," which means lithography, electroforming, molding. LIGA involves x-ray lithography of a polymer film followed by selective removal of material to form a three-dimensional pattern from which a mold is made. Among the advantages of LIGA for this purpose are that it is applicable to a broad range of materials, can be used to implement a variety of designs, including those of structures >1 mm high, affords submicron precision, and is amenable to mass production at relatively low unit cost. Fabrication of the proposed actuators would involve some technological risks - in particular, in the integration of electrode connection lines and placement of actuator elements. It will also be necessary to perform an intensive study of the feasibility of growing piezoelectric crystals onto LIGA molds

    Silicon Membrane Mirrors with Electrostatic Shape Actuators

    Get PDF
    Efforts are under way to develop deformable mirrors equipped with microscopic electrostatic actuators that would be used to maintain their reflective surfaces in precise shapes required for their intended applications. Unlike actuators that depend on properties of materials (e.g., piezoelectric and electrostrictive actuators), electrostatic actuators are effective over a wide temperature range. A mirror of the present type would be denoted a MEMSDM (for microelectromechanical system deformable mirror). The reflective surface of such a mirror would be formed on a single-crystal silicon membrane that would be attached by posts to a silicon actuator membrane that would, in turn, be attached by posts to a rigid silicon base (see figure). The actuator membrane would serve as the upper electrode of a capacitor. Multiple lower electrodes, each occupying a conveniently small fraction of the total area, would be formed on an electrically insulating oxide layer on the base, thereby defining a multiplicity of actuator pixels. The actuator membrane would be corrugated in a pattern that would impart mechanical compliance needed for relaxation of operational and fabrication-induced stresses and to minimize the degree of nonlinearity of deformations. The compliance afforded by the corrugations would also help to minimize the undesired coupling of deformations between adjacent pixels (a practical goal being to keep the influence coefficient between adjacent pixels below 10 percent)

    Larger-Stroke Piezoelectrically Actuated Microvalve

    Get PDF
    A proposed normally-closed microvalve would contain a piezoelectric bending actuator instead of a piezoelectric linear actuator like that of the microvalve described in the preceding article. Whereas the stroke of the linear actuator of the preceding article would be limited to approximately equal to 6 micrometers, the stroke of the proposed bending actuator would lie in the approximate range of 10 to 15 micrometers-large enough to enable the microvalve to handle a variety of liquids containing suspended particles having sizes up to 10 m. Such particulate-laden liquids occur in a variety of microfluidic systems, one example being a system that sorts cells or large biomolecules for analysis. In comparison with the linear actuator of the preceding article, the bending actuator would be smaller and less massive. The combination of increased stroke, smaller mass, and smaller volume would be obtained at the cost of decreased actuation force: The proposed actuator would generate a force in the approximate range of 1 to 4 N, the exact amount depending on operating conditions and details of design. This level of actuation force would be too low to enable the valve to handle a fluid at the high pressure level mentioned in the preceding article. The proposal encompasses two alternative designs one featuring a miniature piezoelectric bimorph actuator and one featuring a thick-film unimorph piezoelectric actuator (see figure). In either version, the valve would consume a power of only 0.01 W when actuated at a frequency of 100 Hz. Also, in either version, it would be necessary to attach a soft elastomeric sealing ring to the valve seat so that any particles that settle on the seat would be pushed deep into the elastomeric material to prevent or reduce leakage. The overall dimensions of the bimorph version would be 7 by 7 by 1 mm. The actuator in this version would generate a force of 1 N and a stroke of 10 m at an applied potential of 150 V. The actuation force would be sufficient to enable the valve to handle a fluid pressurized up to about 50 psi (approximately equal to 0.35 MPa). The overall dimensions of the unimorph version would be 2 by 2 by 0.5 mm. In this version, an electric field across the piezoelectric film on a diaphragm would cause the film to pull on, and thereby bend, the diaphragm. At an applied potential of 20 V, the actuator in this version would generate a stroke of 10 micrometers and a force of 0.01 N. This force level would be too low to enable handling of fluids at pressures comparable to those of the bimorph version. This version would be useful primarily in microfluidic and nanofluidic applications that involve extremely low differential pressures and in which there are requirements for extreme miniaturization of valves. Examples of such applications include liquid chromatography and sequencing of deoxyribonucleic acid

    MEMS-Based Piezoelectric/Electrostatic Inchworm Actuator

    Get PDF
    A proposed inchworm actuator, to be designed and fabricated according to the principles of microelectromechanical systems (MEMS), would effect linear motion characterized by steps as small as nanometers and an overall range of travel of hundreds of microns. Potential applications for actuators like this one include precise positioning of optical components and active suppression of noise and vibration in scientific instruments, conveyance of wafers in the semiconductor industry, precise positioning for machine tools, and positioning and actuation of micro-surgical instruments. The inchworm motion would be generated by a combination of piezoelectric driving and electrostatic clamping. The actuator (see figure), would include a pair of holders (used for electrostatic clamping), a slider (the part that would engage in the desired linear motion), a driver, a piezoelectric stack under the driver, and a pair of polymer beams centrally clamped to the flexure beam via a T bar. The holders would be held stationary. One end of the piezoelectric stack would be held stationary; the other end would be connected to the bottom of the driver, which would be free to move up and down. All of these components except the piezoelectric stack and the polymer beams would be micromachined from a 500- m-thick silicon wafer by deep reactive-ion etching. The inchworm motion would be perpendicular to the broad faces of the wafer (perpendicular to the plane of the figure). The combination of the polymer beams and the centrally clamped flexure beam would spring-bias the slider into a position such that, in the absence of electrostatic clamping, the gap between the slider on the one hand and both the driver and the holder on the other hand would be no more than a few microns. This arrangement would make it possible to electrostatically pull the slider into contact with either the holders or the driver at a clamping force of the order of 1 N by applying a reasonably small voltage (of the order of 100 V)

    Piezoelectrically Actuated Microvalve for Liquid Effluents

    Get PDF
    Modifications have been proposed to effect further improvement of the device described in Improved Piezoelectrically Actuated Microvalve (NPO-30158), NASA Tech Briefs, Vol. 26, No. 1 (January 2002), page 29. To recapitulate: What is being developed is a prototype of valves for microfluidic systems and other microelectromechanical systems (MEMS). The version of the valve reported in the cited previous article included a base (which contained a seat, an inlet, and an outlet), a diaphragm, and a linear actuator. With the exception of the actuator, the parts were micromachined from silicon. The linear actuator consisted of a stack of piezoelectric disks in a rigid housing. To make the diaphragm apply a large sealing force on the inlet and outlet, the piezoelectric stack was compressed into a slightly contracted condition during assembly of the valve. Application of a voltage across the stack caused the stack to contract into an even more compressed condition, lifting the diaphragm away from the seat, thereby creating a narrow channel between the inlet and outlet. The positions of the inlet and outlet, relative to the diaphragm and seat, were such that the inlet flow and pressure contributed to sealing and thus to a desired normally-closed mode of operation

    Back Actuators for Segmented Mirrors and Other Applications

    Get PDF
    Back actuators have been proposed as alternatives to edge actuators considered previously for use in aligning hexagonal segments of lightweight segmented astronomical mirrors planned for use in outer space. The proposed back actuators could also be useful on Earth as parts of wafer-conveyance systems in the semiconductor industry. Whereas the prior edge actuators were required to impose rotations and torques (in addition to forces and displacements) at joints between mirror segments, the proposed back actuators would be required to impose only forces and displacements (sometimes accompanied by small incidental torques and rotations). The advantages of the back-actuation approach, relative to the edge-actuation approach, are that the actuation mechanisms could be made simpler and a single overall actuation scheme could incorporate what were previously separate actuation schemes for (1) orienting the mirror segments at the required angles and (2) placing the mirror segments at the required distances along the optical axis from the focus. Each hexagonal mirror segment would be supported at three points by sets of linear actuators (see figure). The linear actuators at each support point would include one to impose displacement along the optical axis (the z axis in the figure) plus one or two to impose displacement along one or two of the hexagonal axes. The linear actuators could be, for example, shape-memory-alloy actuators or piezoelectric actuators that move in the manner of an inchworm like those described in several previous NASA Tech Briefs article
    corecore